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BACKGROUND: When chemical health hazards have been identified, probabilistic dose~response
assessment (“hazard characterization”) guantifies uncertainty and/or variability in toxicity as
a function of human exposure. Existing probabilistic approaches differ for different types of
endpoints or modes-of-action, facking a unifying framework,

OBJECTIVES: We developed a unified framework for probabilistic dose~response assessment.

METHODS: We established a framework based on four principles: ) individual and population dose
responses ate distinct; &) dose—response relationships for all (including quanial) endpoints can be
recast as relating to an underlying continuous measure of response at the individual level; ) for
effects relevant to humans, “effect metrics” can be specified to define “toxicologically equivalent”
sizes for this underlying individual response; and ) dose-response assessment requires making
adjustments and accounting for uncertaioty and variability. We then derived a step-by-step
probabilistic approach for dose-response assessment of animal toxicelogy data similar to how
nonprobabilistic reference doses are derived, llustrating the approach with example non-cancer and
cancer datasets.

ResupTs: Probabilistically derived exposure limits are based on estimating a “target human dose”
(HD3h), which requires risk management—informed choices for the magnitade (M) of individual
effect being protected against, the remaining incidence (£) of individuals with effects 2 M in the
population, and the percent confidence. In the example datasets, pmbabﬂistigafiy derived 90%
confidence intervals for HDy/ values span a 40- 1o 60-fold range, where 7 = 1% of the population

experiences 2 M = 1%-10% effect sizes.

ConcLUsIonS: Although some implementation challenges remain, this unified probabilistic frame-
work can provide substantally more complete and transparent characterization of chemical bazards
and support better-informed risk management decisions.

Crrations Chiu WA, Sleb W. 2015. A unified probabilistic framework for dose—response

assessment of haman health effects. Environ Health Perspect 123:1241-1254; hrip://dx.doi.
org/10.128%/¢hp. 1409385

Introduction U.S. EPA 2005), although more recently

The process of identifying human health
hazards of chemicals has evolved substandally
over time with advances in weight of evidence
determination, mode of action (MQOA), and
systematic review (c.g., Meek et al. 2014;
NRC 2011; U.S. EPA 2005; Woodruff and
Suttonr 2014), but practices for quantitative
dﬁse—rcsp(msc assessment to characterize
these hazards and inform risk management
rely largely on approaches that have shown
refatwely small changes since they were first
used. For assessment of non-cancer effects,
it is sdll common to derive exposure limics
by dividing a no observed adverse effect level
{(NOAEL) or a benchmark dose lower confi-
dence limit (BMDL) uenveu from a chronic
study by a generic “uncertainty factor”

of 100 {also known as a “safety,”
ment,” or “extrapolation” factor), although
using chemical-specific “adjustment” factors
{(CSAFs) or data-derived extrapolation factors
{DDEFs) is increasingly encouraged (IPCS
2005; U.S. EPA 2014b). Exposure limits for
carcinogens that are genotoxic or without an
established nongenotoxic MOA are usually
based on other approaches, in particular che
linear extrapolation approach (EFSA 2005;

«
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the margin- -of-exposure approach has been
suggested even for genotoxic carcinogens
{Barlow et al. 2006; Benford et al. .?;OI,O,
VBrien ev al. 2006).

Although procedurally straight-forward,
these practices are most 'Jmenablc ro risk
management decisions in which the margins
between calculated exposure limits and actual
or anticipated exposures are large enough to
be of littde or no risk management concern.
For instance, the <aiety factor approac ch
resules in an exposure Hmit [acceptable daily
intake {ADI), reference dose (RfD)] generaily
presumed to be “safe” {e.g,, having “reason-
able certainty of no harm™). However, the
conclusion that exposures at or below thls
level would not resule in appreciable health
risks is typically not based on further quan-
titative subseandation. For exposures higher
than such an exposure limit, the only state-
ment that can be made is that risks “cannot
be excluded” without any quantitative charac-
terization of what the extent of potential
health effects might be. Thus, if reducing
exposures to the level of the derived exposure
limit is challenging (e prac-

., economically,
tically, or polidically), then there is no way to
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weigh the cost of exposure reduction against
its likely human health benefits. Moreover,
there may be a residual risk at, or even below,
the exposure limit, and this residual risk
may vary among different chemicals and/or
exposure scenarios.

To address chese disadvantages, a proba-
bilistic approach to hazard or risk charac-
terization has been advocated by several risk
assessment researchers (Baird et al. 1996;
Evans et al. 2001; Haetis et al. 2002; Slob
and Pieters 1998; Swartout et al. 1998), as
well as by several expert panels (NRC 1994,
2009; U.S. EPA Science Advisory Board
2002). Although most of the work has
focused on charﬂ"tkn/atmn of non-cancer
effeces, the National Research Council
{(NRC) revisited the question of unifying
assessment of cancer and non-cancer effects
{NRC 2009). Some of the recommendations
of NRC (2009) as to defaule approaches o
low-dose extrapolation have been controver-
sial {(Abt et al. 2010; Pottenger et al. 2011;
Rhomberg 2 ; Rhomberg ec al. 20113
however, deciding on such science policy
questions {(as “default” options clearly are)
does not preclude moving forward with
developing a unified probabilistic framework
for all eypes of endpoints.

In this review we present a unified proba-
bilistic framework, developed in tandem
with an international barmonization project
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(IPCS 2014) on uncercainty in human
dose-response assessment [“hazard charac-
terization” in World Health Organization/
IPCS (International Program on Chemical
Safety) nomenclature]. This framework recains
the usual “two-part” pr(:ce:q as employed in
the current nonprobabilistic (“deterministic”)
approaches for quanticative dose-response
assessment: ) dose—response analysis of an
experimental or observational dataset of health
effects resulting from chemical exposure, and
4) inference (or “extrapoladon”) as to the
potential effects in the mrget human popula-
tion. The second part needs to account for
differences in characreristics {e.g., species,
exposure duration) bhetween the dataser
analyzed and the human population of
interest for risk assessment. In terms of the
usual deterministic approach of dose-response
assessment, the determination of the point
of departure (POD) may be regarded as the
first part and the extrapolations addressed by
uncerfainty factors (interspccies, intraspecies,
subchronic-to-chronic, etc.) as the second
part. Aldhough the basic procedure appears
unchanged, probabilistic assessment requires
more precise definitions of each step and
thus also promotes greater transparency as to
the biological and quandrative assumptions
underlying the dose—response assessment. In
particular, the framework we propose here
provides z theoretical basis for human dose-
response assessment, where all underlying
concepts are explicidy defined and logically
interrelated. In this way, it is fully trans-
parent as to what the various computadonal
procedures represent, and how the results can
be interpreted.

This review is organized as follows. In
“Methods,” we first set out the four funda-
mental principles that underlie the unified
probabilistic framework. In addition, we lay
out a prototypical approach to implement
the unified framework for human-relevane
animal toxicology data. In “Results,” we illus-
trate the approach by deriving probabilistic
exposure limits from example non-cancer
and cancer datasets using probability
distributions for uncertainty derived from
historical data (for datasets and computer
code, see Supplemental Material, Table 51).
In “Conclusions,” we discuss implementa-
tion issues and idencify data needs (see
also Supplemental Marerial, “Additional

Applicatons and Excensions”).

Methods

Fundamental principles. Principle 1.
Individual and population-level dose
response. The starting point of this frame-
work is that a conceptual distinction exists
between effects on the individual and effeces
on the population. In particular, the effect
of exposure at the level of the individual is

1242

the “magnitude” of a measure of toxico-
logical effect. The result of 2 fixed exposure
in a population will be different magnitudes
of effect in different individuals in that
population. Therefore, for 2 particular magni-
tude of effect, the result in the population is
expressed as an “incidence.” In the present
framework, the maguitude of change needs to
be ordinally related to severity—so a greater
magnitude constitutes a more severe effect
For instance, a body weight (BW) decrease
of 20% is more severe than a BW decrease
of 10%, and a moderate liver lesion is more
severe than a mild liver lesion. Thus, for a
monotonic dose response in an individual, it
may be imagined that a higher exposure will,
fm any given endpoint, Eeau to more severe
cffects. In a population, increasing exposure
levels will resule in simultaneously increasing
both incidence and severity: more and more
individuals will suffer from more and more
severe effects.

For convenience, we establish the
notation whereby human deose or exposure
is denoted HD, che magnitude of effect is
denoted by M, and incidence is denoted 1.
Because ]t{ is assumed to have an ordinal
relationship with severjty, incidence can be

characterized as the incidence of effects of

magnitude equal or greater than M, denoted
LN Bkaause it is custornary to discuss “inci-

lence” in terms of effects that may be of
concern, we use the s]mp]cr notation M,/
as shorthand for HD(7,,,). In addition, we
use an asterisk (*) to indicate fixed or target
values, such as a “critical effect size” (M*),
target human dose (HD"), or target incidence
level (7).

Given these definitions, the outpuc
of 2 human dose—response assessment is
concerned with the quantitadve reladon-
ships among HD, M, and I, along with their
uncertainty. We focus on the most commeon
type of outpug, which is developing a human
health—based exposure limit (some other types
of outputs are discussed in Supplemental
Material, “Performing a population assess-
ment’). In our nocadon, this means esti-
mating a target human dose, HD*, which is
regarded as a function of a two-dimensional
protection goal: the rarget level of incidence
(7} and the specified level of effect magnitude
(M), both of which may be selected based on
risk management considerations. Specifically,
it is the dose at which only 2 small fraction
of the population (low incidence of /%) will
experience effects 2 A¥ which can be written

HD*= HDU ) = HDypd' (1]
For instance, one could write
HD(1%, o0mw) = D% for the dose at

whlah only 1% of the population has > 10%
change in BW.

Principle 2. Continucus parameters

underlying all observed dose-response
endpoints. The second element of this frame-
work is that observed dose-response relation-
ships for all endpoints can, at the individual
level, be recast as relating to an underlying
continuous measure of response. Obviously,
this principle applies to endpoints that are
directly observed as continuous data. In
thar case, the observed dose response for the
average responses as a function of dose may
be imagined to reflect the dose response in
an individual animal (namely, the average
animal), even though an mmwdual s dose
response is not dirccdy observable in most
toxicological studies. Endpoints that are
generally measured as quantal response
rates in a study population require some
additional discussion. Below we discuss two
options, briefly indicated as “deterministic”
and as “stochastic” quantal endpoints (Slob
ctal. 2014).

Many quantal endpoints, such as in histo-
pitholagy, are ordinally scored {e.g., minimal,
mild, moderate, severe}. Such endpoints
can be considered as gradua]iy increasing
in magnitude at the individual level, but
are reported in “bins,” or severity categories
rather than as a continuous measure. In chis
way, the reported incidences can be thought
of as relating to a single category (or a limited
number of categories) of severity, whereas
for other severities the incidences are not
reported, In fact, any continuous dataset can
be “quantized” and transformed into such a2
quamai {or ordinal) dacaser by setting one (or

re) cut poings, resulting in incidences ¥V
associated with each cut point. For instance,
changes in hematocrit from the mean level in
the crmrrois can be separated into < 5% and
> 5%, and the fraction of animals bklow and
above the 5% cut point can treated as quantal
data. In this case, the effective dose (ED) for
a 5% change in the continuous hemartocrit
data (f.e., D{,,) is equal to the ED for a 50%
quantal response, EDy_sge,, as illustrated in
Figure 1. This concept of quantal end pomrs
has previously been discussed by Slob and
Pieters {1998).

Therefore, when quantal data can be
viewed as reflecting the incidence of a contin-
uous cffect above or below a “determined”
cut point egual to M, then the endpoine
is referred to as a “deterministic quantal
endpoint.” This is generally appropnaw for
effects that can occur in different deprees of
severity. Furthermore, for the purposes of
dose-response data analysis, the EDsq from
the quantal response data would be used to
estimate the EDypx corresponding to M* of
the underlying continuous data. When the
available dose—response data report the inci-
dences related to various severity categories,
then one of them may be chosen as being
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minimally adverse. When they report only the
incidences related o a single severity category,
this severity may be more than minimally
adverse, in which case additional uncertainty
arises in estimating the dose for a minimally
adverse level of severity.

However, not all quantal effeces may
be derived from applying a cut point to an
underlying continuous variable. Some effects
appear to have discrete outcomes, without
an underlying, gradually increasing level of
severity. An example of such an endpoint
is malformations, which often do not show
different degrees of severity: It is there or it
is not. Cancer may be considered another
example, because a particular tumor is present
or not (ignoring observational practicalides).
For such endpoints, an alternative interpre-
tation of the dose response is possible: The
observed incidences at cach dose are consid-
ered as resulting from a “stochastic” process,
where the observation that an individual
animal has a tumor or not is analogous to
drawing a lottery ticket, with probability equal
to the expected incidence at that dose (and
time of observation). That is, given all relevant
circumstances for the pasticular individual
{such as genetic make-up or experimental
conditions), the effect is not fully determined,
but rather any particular animal may be (un)
lucky or not. If it were possible to perform
a stady in which all animals were identical,
and identically treated (except the dose, bur
without dosing errors), then the quantal dose
response would estimate the “individual prob-
ability of effect.” In this case, the observed
incidence Y is treated as an estimate of the
underlying individual probability of effece
M, so M* would correspond to an incidence
V' = M* as depicted in Pigure 2. This conceprt
of quantal endpeoints has previously been
discussed by Slob et al. {2014).

Therefore, when quantal data are assumed
to reflect the individual probability of an
outcome as a result of a stochastic process, the
endpoin is referred to as a “stochastic quantal
endpoint.” In reality, there are always small
differences between animals (including the
experimental conditions), which will have
some impact on the dose response. However,
this additional impact is generally not sepa-
rately distinguishable from the dose—response
data. This interindividual variability might
he assumed to be relatively small in the
study population and hence ignored. 1f so,
the observed quantal dose response approxi-
mates the individual probability of effect as 2
function of dose.

Whether the “deterministic” or “stochastic”
interpretation of quantal endpoints is correct
remains uncertain, because even for endpoints
such as cancer or malformations, it mighe
be the case that che effect in an individual
subject is evoked deterministically as soon

Unified probabilis

as a given internal dose in that individual is
reached. For risk assessment, the distinction
between che owo interpretations is important
for the following reason: In the deterministic

ic dose-response assessment

interpretation, the animal dose~response
curve reflects the experimental variation and
errors in the animal study, and therefore

its shape {e.g., slope}) would not be relevant
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Figure 1. Deterministic quantal endpoints: quantal responses reflecting incidences of a continucus
response above/below a fixed cut point. Tha various dose-rasponss lines in the upper panel refiect the

{hypothetical) dose responses of individual animals.
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Figure 2. Stochastic quanial endpoints: quantal responses reflecting individual probability of effect. The
dashed lines in the upper and lowsr panel are the sams, representing the {hypotheticall dose response of
the median animal. In the upper panel, the solid lines repressnt thypothetical} individual dose-response

curves. In the lower panel, the solid line refisct

the expected value of the observed guantal response from

the population of individual responses, which is less steep than the dose response of the median animal.
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information for predicting risks in humans.
However, in the stochastic incerpretation, the
dosc-rcspmws curve may be regarded as a
model for the human individual probability
of effect, and therefore its shape would be
relevant as information for human risks.

Principle 3. Selecting a basis for
inference: the “effect metric.,” The third
fundamental clement in this framework is that
inferences are made on the basis of a selected
“effect metric” that defines “toxicological
equivalent” magnitudes of effect. This effect
metric should reflect the effect size in such a
way that it applies across species (or popula-
tions) as well as across individuals within 2
species {or population). Changes of the same
magnitude in this metric are considered to
reflect equal toxicologically induced changes.

In addition, the magnitude of effect
should also be ordinally related ro severicy
at the level of the individual. For a contin-
uous endpoint, severity increases with an
increase in the percent change of a contin-
uous endpoint {e.g., from 5 to 7% decrease
in hematocrit). For a deterministic quantal
endpoine, the severity is related to the
category of effect (e.g., from “mild” to more
severe liver lesions). For a stochastic quantal
endpoint, severity is related to the probability
of experiencing the effect {e.g,, from 1 0 2%
individual probability of cancer).

“Equipotent doses” are defined as doses
that elicit the same size of cffect metric.
Thus, individuals with the same equipotent
doses (at all effect sizes) are defined as equally
sensitive to the chemical for the endpoint.

Note that it is assumed chat the effece
has previously been determined to be an
appropriate basis for making inferences
about human health effects—for example,
that the effects observed in the rvest animal
are relevant to humans. In this context,
“relevance” needs to be determined only in
the qualitative sense: Could a similar effece
occur in humans, or not? When the answer
is “yes,” quantitative differences, including
large differences that are expected based on
MOA considerations, should be addressed
explicitly and quantitatively, taking uncertainey
into account as well {e.g., using a probabilistic
CSAF or DDEF; see Supplemental Material,
“Chemical-specific/data-derived toxicokinetics
or toxicodynamics”).

The use of an effect metric does not neces-
sarily imply that 2 given change is equally
adverse in all individuals (or species). For
instance, a 5% decrease in hematocrit may
be considered as a toxicologically cquwﬂlcn[
effect metric in all individuals, bur be adverse
in persons with anemia and nonadverse in
healthy persons. Finally, it should be noted
that further inferences are possible from the
toxicologically equivalent effect metric to
other measures of health effect, such as if an
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adverse outcome pathway can quantify the
linkage between a change in effece metric and
the hkchhood of an adverse health outcome.
For instance, if the effect metric is a percent
change in serum cholesterol, given an adverse
outcome pathway linking serum cholesterol
changes to cardiovascular disease, one might
aim to estimate the risk of fatal myocardial
infarction in a specific population. Because
variability in baseline serum cholesterol levels
and other relevant risk factors (e.g., bload
pressure, C-reactive protein) may differ across
different populations {z.g., bcusmphla reglons,
socioeconomic groups, ]dwtage@ ), anaﬁwes of
such “downstream effects” would ncccssanly
be specific to the population(s) being asses
even if the relationship berween exposiire and
the effect metric is assumed to be the same
across populations. Such analyses may also be
useful for socieeconomic analyses because a
fised magnitude of effect may have different
cost implications across human subpopula-
tions {e.g., modifying insulin for diabetics
vs. nondiabetics). This is discussed further
in Supplemental Material, “Extrapolation to
downstream health endpoints and adverse
outcome padma,m and Figure S1.
Principle 4. Making adjustments while
accounting far variability and uncertainty.
The final fundamental clement in this
framework is that dose-response assessment
involves making inferences about the human
population of interest for risk assessment {the
“target population”) based on information
obtained from a scientific study (the “study
population”). In the usual deterministic
approach, these inferences are 1c-compiish¢3d
using the “uncertainty factors” to address
{potential) differences due to differing species,
human variability, suboptimal study condi-
tions, and so on. However, these factors are
often mixtures of multiple elements that
need to be clearly specified in a probabilistic
framework, Specifically, making inferences
between the “study” and “rarget” populations
involves making adjustments from the study
to the tasget popuhtmns while accounting for
variability and uncereainty:
¢ Adjustments are necded to correct for
differences between the study and target
populations in order to make inferences
as to the potential health effects in the
population of interest, with the relevant
exposure conditions. For example, on
average across chernicals, the dose in milli-
grams per day eliciting the same effect
differs between species due to differences in
body size. The usual (implicit) adjustment
is to divide the dose by BW, which is also
intended to normalize across individual
subjects in the {study or targer) popula-
tion. Burt data increasingly support the idea
that the dose in milligrams per kilogram
BW may need additional adjusement by an

>d,

allometric scaling factor to achieve equiva-
lent effects {e.g., Bokkers and Slob 2007;
Dedrick 1973; Kleiber 1932; Price et al.
2008; U.S. EPA 2011b). Purther, it might

be knov m Lh’lt for any pmlculir chkrmuﬂ

I\meUL or mmwuynurmc propcmcs, whlch,
for inﬂtanc&, make it plausible chat one
species would be more sensitive than others
{e.g., resulting in a CSAF or DDEF).
As another example, for some classes of
effects, the expected relationship between
a benchmark dose (BMD) and duration
of expostre might be reflected by Habers
law {toxicity depends on the pxodua of
concentration and exposure time), which
may be used to adjust the BMD to other
exposure durations. Usually, differences
in study populadion/conditions and the
target population/conditions can be berter
characterized (i.c., its uncertainty reduced}
wich additional data or aralysis, and some
can even be eliminated by a,onductmg new
studies that require fewer adjustrents {e.g.,
conducting a chronic study to replace a
subchrenic study).

“Variabilicy” refers to intrinsic hetero-
geneity about a central tendency, usually
bct ween the individuals in the “rarged”
population. For example, different indi-
viduals (humans) will exhibit different
sensitivity to toxic effects from the same
exposure due to various sousces of vari-
ability {e.g., genetics, lifestyle, healdh
status). Additional data or analysis can
make an estimate of human variability
more precise, but the variability itself
cannot be eliminared.

“Uncertainty” refers to a lack of knowl-
edge that could, in principle, be
reduced with additional data or analysis.
Uncertainty can relate to the degree
of adjustment {e.g., the exact allome-
tric power with which co adjust for BW
differences) but also o the degree of vari-
ability (e.g., how much more sensitive is
the 95% individual refative to the median
individual). As another example, because
toxicity scudlcs have finice numbers of
individuals per dose group, the BMD is
uncercain. This uncertainty can, in prin-
ciple, be reduced by performing a farger or
better designed study. Similarly, “missing
studies” sepresent an uncertainty that can
be guantified by meta-analyses comparing
the overall differences between study
types and capture that in a distribution
{e.g., Hattis et al. 2002). In some cases,
observed variability among chemicals, in
general, can be used to inform the uncer-
tainty in an adjustiment factor for a specific
chemical. For instance, observed variability
among chemicals in the dose ratio between
subchronic and chronic studies for the
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same effect translates into uncertainty in

the subchronic/chronic difference for a

specific chemical for which no such data

are available {e.z., Bokkers and Slob 2003).

As Table 1 shows, all typical uncertainey
tactors include an uncertainty compo-
nent, and an adjustment component,
except for the intraspecies factor, where
the adjustment component is replaced by a
variabilicy component.

Prom{ypiml approaf}; implementing @
unified probabilistic framework. The prin-
ciples described abwove underlying a unified
probabilistic framework can be applied to
any type of study or endpoint that has dose-
response information, but here we address
the most common case of using animal
toxicology data. The primary assumption is
that the candidate cridical endpoint(s) from
an animal toxicology study is relevanc in the
sense that similar effects might be expected
to eccur in humans (uncertainty in the
qualitative cross-species concordance is not
addressed in this framework). Additicnal
assumptions are as follows:
¢ The toxicity data are from a study

condected in an (inbred) laboratory animal
strain, with the purpose of mimicking what
might happen in a typical human bemé
Intrastudy variability reflects experimental
errors {e.g., dosing errors, imperfectly
controlled experimental conditions) and
remaining differences (genetic, or other-
wise) among animals. This is treated as
staristical uncertainty in estimating a POD,
which is supposed to mimic an equipotent
dose in a typical human being,

* In the effect range of interest, the
continuous dose—response relationships
are monotonic and parallel on a log-dose
scale across species and across individuals
within a species, so that the values (distri-
butions) for any adjustmencs, variability,
or uncertainties are independent of the
selected critical effect size A7*. Slob and
Setzer {2014) found evidence consistent
with this assumption.

The basic steps of the procedure under
these assumptions are as follows (see also
Figure 3 and Table 2}:

1. Select a toxicologically equivalent effect
metric and an associated critical effect
size (M, and conduct a BMD analysis
with benchmark response (BMR) = A
{Crump 1984) to derive the uncertainey
distribution for the dose corresponding to
Af* in the animal (4D,0).

2. Apply probabilistic interspecies and
other adjustments to 4Dy to derive
the uncertainty distribudon for the dose
corresponding to M* in the median
human (HDp).

3. Select a human variability distribution
{e.g., log-normal), setting the median

Unified probabili

to HDyp with an uncertainty distribu-
tion as obtained in step 2. The measure
of dispersion of this human variability
distribution [such as geometric standard
deviation; GS8D = exp(6] has an uncer-
tainty distributios, reﬂ*"ting that we are
uncertain about the degree of variability
among individuals. From this (mhatam)
human variability distribution, we derive
an {uncertain) human variabilicy factor
F{ 'V« for the ratio between the quantile
corresponding to a selected target inci-
dence (%) value and the median, so that
HDud" = HDype x HV s
This outpue is an estimace of the HDyd
in the form of an u neertainty diseribution,
and any given level of confidence may be
chosen for deriving an exposure limit {e.g.,
a “probabilistic RED”), by taking the asso-
ciated lower percentile of the uncertainty
distriburion of HDy". Aleernatively, the full
uncertainty distribucion can be combined
with exposure information to inform risk
management decisions. Details of each step
are described below along with Monte Carlo
{MC) procedures for the overall calculation.
Step 1: Estimating the animal dose
cerrespanding to the critical effect size for
the selected mxiwlogicaﬂy equivalem effect
metric. The purpose of this step is to establish
the uncertainty discribution for 4D, the
animal dose associated with a specified effect
size M* (= BMR) based on a specified toxico-
logically equlvalcm effect metric.
The key issue in defining the effect
metric is how to address baseline differences

stic dose—

response assessment

across species or individuals in order to
make changes “comparable.” For instance, 2
decrease of 10 g in rat body weight does not
compare to a 10-g change in human body
weight. For most {continuous) parameters, 2
percent change would be the obvious effect
metric, being the only measure that may be
defined as representing an equal effect size
among different species and individuals (with
different background responses). Note that
an equal effect size does not imply that it will
always be equally adverse in different species/
individuals \suah as a 5% decrease in hema-
tocrit in anemic vs. nonanemic persons}.
Severity categories in histopathological
lesions appear to directly apply as a measure
of equivalent effect magnitude. However, for
endpoints measuring an increase in individual
probability of effect, the question of how to
correct for the background risk is not easily
answered. Various measures are being used,
such as additional, extra, or relative risle, which
all correct for background in a different way.
It remains unclear, however, which of these
measures reflects an equivalent measure of risk
{if any}, in particular when background risks
among species {populations) differ greatly.
After having chosen the effect metric, one
also needs to specify a critical effect size—
the magnitude of effect size A" of interest, as
efined by the problem formuladion and risk
management context for the assessment, The
term “critical” here should be understood in
wide sense, that is, it is a selected value (or
even a range of values) that forms a starting
point for doing the probabilistic caleulations.

Table 1. Components of adjustment, variability, and uncertainty in some typical uncertainty factors.

Com

U*‘cprtam*y factor  Adjustment Variab Uncertainty
¢ v
interspecies (3 S
toxicakingtic or
intraspecies o v
Subchronic/ M <
chronic
< s

Oral dose in 'nq'dav may be ad

have alsa been derived for inhalation
osures based on regional gas or particle dosimelry
ived ff' M r,\.p; alory Lrar geometry and anfom
in al ¢ ang are fon the
e, on averqge,
is needed

Em.C.ﬂ val
1ate factor for a
are expected § !Je more sensitive than
or & single cherical and effect, it is

w rnany of them are more sensitive an
, there is variability, the size of which

Gn aver

sriain degree.

When one study type systematica lower
PODs, then a ment would be needed, while a
single chemical may deviate to an uncertain degres.

*The adjustment factor is assumad to be 1 in this case, so that it appears to be absent in the calculations.
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Often, the problem formulation suggests
that the critical effect size should reflect the
effect size that is considered o be “minimally
adverse” biologically. However, current toxi-
cological knowledge does not allow one to
unequivocally define minimally adverse effect
sizes for all potendally critical endpoines.
Fusther, a given effect size might not be mini-
mally adverse in one species or individual,
while it is minimally adverse in another (c.g,
hematocrit and anemia, discussed above). As
a practical Hmitation, the choice of M may be
resericted by the available data. For instance,
the reported data may relate to discree values
of M only {e.g., spécifia severity catego-
sies of lesions, as in histopathological data).
Moreover, the lower the value of A4, the less
precise the estimates of the associated doses
will be. For biolegically defined AM*s, one
might aim to specify scudy designs that are
likely to achieve “adequare” statistical preci-
sion for dose estimates related to chat value
M*. However, even then, the study design
needed to achieve that goal may be impractical
{e.g., unrealistic number of animals needed).
If s0, one may decide to use a statistically
hased M* (i.e., the lowest value of Af* that
achieves the desired level of statistical preci-
sion) as a surrogate. Such staciscicai]y based
Mts could reflect levels of effect that are larger
than minimally adverse levels, and this can
be regarded as an additional source of uncer-
tainty or addressed by setting a more strin-
gent protection goal in terms of incidence.
Typical exarnples of effect metrics and eritical
effect sizes are shown in Table 3, along with
the BMD approach implied, by treating all
endpoints as fundamentally continuous.

The result of the dose-response analysis
is an uncertainty distribution for ADyp,
the animal dose corresponding to M.
Approaches to establishing the uncertainty
distribution include a) translating the BMD
confidence limits obtained by BMD software
into a distribution, &) parametric bootstrap—
ping [Slob and Pieters 1998; impipmemr:é
in the R package (version 3.2.2; R Core
Team 2015) PROAST (RIVM 2012)], or
) Bayaslam anulysis {Kopylev et al. 2007)
It should be noted thar fitting a single
dose-response model may not fully capture
the uncertainties in the dose-response data.
Therefore, instead of deriving 2 BMD distri-
bution from a single model, various models
should be fitted to address model uncertainty.
These model-specific distributions may be
simply pooled in a single distribudion (e.g.,
Slob et al. 2014), or one may apply “model
averaging,” for which various approaches
have been proposed (Bailer et al. 2005; Shao
and Gift 2013; Wheeler and Bailer 2007). In
addition, if different dose—response datasets
are available for the same endpoint, they
could be combined in a joint d(:se-respo;m

1246
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Hurman \/ﬁri:d‘ility factor

for incidence *
i § (HV
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4  Probabilistic RID {ior selected M*and /%
”””” = lower 95% {one-sided} confidence bound

Figure 3. Implementation of the unified probabilistic framework to derive the uncertainty distribution for
HD,¢" and a correspending probabilistic RED. In step 1, BMD analysis is used to derive the uncertainty
distribution for ADy In step 2, this distribution is combined with uncertainties in dosimetric adjustment,
animal-to-human toxicokinetics and toxicodynamics, and other study-specific limitations, to derive the
uncertainty distribution for O+ In step 3, the distribution is further combined with the uncertainty in
the human variability factor corr ﬂspor‘dir‘g to the selected incidence /% in the population to derive the
uncsrtainty distribution for HOy". The lower 95% {ona-sided) confidence limit on H0p" can be chosen
as the “probabilistic RID” corresponding to the selected valuas of M* and /* See "Methods” and Table 2
for additional details. This approach is ilustrated with two example datasets, with results shown in Table 4
and Figures 4 and 5.

Table 2. Summary of unified probabilistic framewaork,

Step and goa New input{s) for each step Outputis) for each step

e Animal dose—response data certainty distr i for
e T“m”logicall\' equivalent effect metric (A4 BMD based on ysis of animal
on for Al the L dose—response d
ani nai ose associated with
the critical effect size M.
. Equipotent dose in
nedian human. infer the
i ibution for

~a
&

Oy = Al DAF/
{AHU % OU) = ur
distribu

derived by muitip
uncertain factors.

o the crmccﬂ effect size MY, ifferencas
ns for

to study- and/ Dr

rJu t!15f

nfor [hP nei!an of :DI’U!EI percentile
ility distribution of a human variability distribution

| human variability dist with median equ +0p and

rate meartamty distr standard deviation on log scale

of [o7¥)

affects of size > ™.
Select a particular value
HO* from the uncertain

J(Z/+0'H) fora !og—normai
re 7;is the normal zscore

Ae yse 2 log-rormal distribution for the uncertainiy in the variance, but other distributions could in principie be used.
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analysis, with study as a covariate in the
analysis, that is, some of the parameters of the
dose-response model are study specific, and
others are not {Slob and Setzer 2014).

Step 2: Adjustments due to interspecies
differences and study conditions. The purpose
of this step is to establish an uncertainty distri-
bution for the “typical” human dose associ-
ated with a specified magnitude of effect and
endpoint, and with specified exposure condi-
tions. This step combines with the results
of step 1. The “typical” human is defined as
the median person of the population. This
interspecies step involves addressing three
separate aspects:
¢ A dosimetric adjustment factor {DAF)

for generic physiological differences

{e.g.. body size differences for oral dose;

respiratory tract differences for inhalation

exposures) between the test animal and

{median) buman, along with uncertainty

in the expected adjustment
e Animal-to-human uncertainties (AHU)

due to potential chemical-specific toxico-
kinetic or toxicodynamic differences
between the test animal and humans,

resulting in differences in sensitivity for a

given chemical
¢ Other uncertaintes (OU} due to specific

study conditions that differ from the

target exposure conditions (e.g

dummon, or exposure pa[ccrn),

The result of this step is an uncertainty
discribution for the human dose ar which
50% of the human population has effects
greater than {or equal to) A

- SXposure

HD(O.5,4p) =
14[)/1,]* x quEl (1/1]17(’;7 A Olt/r) LZJ

Each of the adjustments is described in more
detail below.

Dosimetric adjustments. It is increasingly
evident that generic differences in physi-
ology (e.g., body size) across species can be
a'ccoun[ed for by multiplying the animal dose
by a DAF, or cquw')lenriy by dividing by
an “assessment” factor (AF) accounting for
interspecies body size differences (AF rerbo)-

For oral exposures, scaling doses by a frac-
tional power of BW has been found to better
account for interspecies differences in body
size than scaling by BW alone. Because oral
doses are usually expressed as milligrams per

Unified proba

kitogram BW, a correction factor is needed to
convert the doses in milligrams per kilogram
into aﬂom@tricaﬂy scaled doses. Thus, the
DAF and AF, e are given by

DAF,

ora

{ammaE BW/human BW) ¢ [3]

/4}7

inter-bs(oral) =

(human BW/animal B! - %, [4]

where ¢ is the allometric power. This power
is not exactly known, and can be represented
by a mstnbutmn {e.g., normal). Because this
ad ustment is meant to extrapolate from
the test animal to the median human, the
average {median} animal BW in the study
and the median human BW in the rarget
{sub)population should ideally be used
(1J.S. EPA 2011a). If these are not avail-
able, then standard values can be used {(e.g,,
U.S. EPA 1988), with an uncertainty that
is probably negligible compared with the
uncertainty in the allometric power {although
the BW uncertainty could be included in the
assessment).

For inhalation exposures, different types
of DAFs have been derived for particles
{regional deposited dose rato, or RDDR)
and gases (regional gas dose ratio, or RGDIR)
(U.S. EPA 1994). Based on interspecies infor-
martion about respiratory tract geometries
and air flow rates, the inhalatdion DAFs differ
depending on whether the effects of interest
are regional or systemic. For example, for
effects in the upper airways, DAFs are hased
on the surface areas of relevanc regions of the
respiratory tract and the inhaladon minute-
volume. For systemic effeces chat involve
transport by blood, DAFs utilize informarion
on species differences (if any) in blood-air and
blood-tissue partition coefficients. As with
the oral DAFs, these are meant w extrapolate
between the {median) test animal and che
median human. Standard values, rather than
statistically based medians or values specific
to the study, are usually emploved, but dearly
these are uncertain as well. Thus, one could
define the uncercainty in the DAF (or in the
analogous AF, . bhytnhalion)) bY assuming log-
normal residual uncertainty:

DAF,

inhalation =

(RDDR or RGDR) x expl{€,) [5]

Tabie 3. Example approaches o analysis of the animal dose—response data.

flistic d()Si—E----f’(—BSpOﬂSE assessment

s(inhalation)

(RD DR or RGDRY ! x explengd,  [6]
where €547 is normally distribured with 2
standard deviation of G,z The value of &7
might be based on propagating the uncer-
taincies in the parameters occurring in the
calculations predicting the RDDR or RGDR
or based on expert judgment.

Clwmz’ml--speﬁiﬁf tfoxicokinetic or toxico-
dynamic differences. Test animals and
humans differ not only generically {e.g., in
body size) buc also in Lompvund specific
toxicokinetics or toxicodynamics. Alchough
on average across chemicals, the DAF is
intended to neither under- nor overestimate
the interspecies differences, the actual inter-
species difference for any particular chemical
is unknown in the absence of chemical-
specific data. This uncercainty is addressed
by subsequently dividing by a distribution
for animal-co-human uncertainty (AHU},
reflecting the additional dlﬁerenccs in sensi-
tivity between animal and median human
beyond those addressed by the DAF (ie.,
the toxicokinetc/dynamic differences specifi-
cally related to the chemical considered). For
instance, assuming a Eog-nmmal uncertainty,
one could define

AHU = exp(€ 4077, (7]

where Eary is normally distribured with a
standard deviation of G, With chemical-
specific toxicokinetic or toxicodynamic
data, 2 CSAF or DDEF may be developed,
resulting in

AHU = (CSAF or DDEF) x exp(€ 4077, [8]

where the scandard deviation of €477 would
normally be smaller than that of the defaule
value related to Equadion 6, as discussed
in Supplemental Material, “Chemical-
specific/data-derived roxicokinetics or
toxicodynarmics.”

Additional study-specific adjustments.
Depending on the situation (e.g., experi-
mental secup of a critical study, toxicity
database), additional issues may need to be
addressed to infer the equipotent dose in the
median human under the target conditions.
Those additonal adjustrents and their asso-
ciated uncertainties that are specific to the

Endpaint type (exampies}

nle of toxicologically i

M: E<arr
; it effect melric

Continuous
’hemazocm, S

DP‘

um enzyme, BW, organ/BW ratig)
minis (,quamal

i 3, cyloxicity)

Stochastic quant
thepatic tumers, fetal resorpt

s, eye malformations)

.

Extra risk fo
OCCUITENCS

5%, 10% ’"ercwt range)

“Minimal” {severity catagory}

Y

Quantal modek
of A" = minimal, rml-aﬂ
Quantal models with
BMR = M™ = 1%, 5%, 10%.

% {exira risk}
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study (or endpoint) are addressed in step 2 as

well. The purpose of these adjustments is to

account for the “other uncertaincies” (OU)
in characterizing the uncertainty distribution
for the median human dose associated witch

a specified magnitude of effect, based on 2

specified study and endpoint. Examples of

additional uncertainties include the following;

e The human hazard to be assessed relates
to a different duration of exposure than
that in the study. For instance, when the
effect was in a subchronic rather than
chronic study, the animal dose for the
selected magnitude of effect might have
been smaller in a chronic study. Based
on historical data, one can estimate the
empirical distribution for the rado of
chronic to subchronic dose {e.g., using
equipotent doses from studies of both
durations across many chemicals). Or, in
spf:cific situations a dose—time relation-
ship {e.g., cumulative dose = constant,
analogous to Haber's law) could be postu-
lated, along with a distribution reflecting
the uncereainty in how accurately the
relationship holds.

e The human hazard to be assessed relates
to a different route of exposure than that
in the study, such as inhalation versus
oral. Again, both an empirical {e.g., ratio
of inhalation to oral equipotent doses),
theoretical {e.g., based on total intake
or absorbed dose), or model-based [e.g
physiologically based pharmacokinetic
(PBPK) model] approach can be used,

along with a distribution reflecting the
uncertainty in how accurately the assumed
relationship is believed to hold.

* The hazard is being assessed for a different
exposure pattern than that in the study,
such as continuous exposure in humans
versus daily bolus exposure in the rest
animal. In this case, it is common to male
assumptions about the dose-time rela-
tionship, such as peak or cumulative dose,
as the basis for adjustment, If multiple
assumptions are plausible, the uncer-
tainty among the different options can
be characterized through a distribution.
For instance, when there is uncertainty
whether a given peak exposure would
be equivalent to a three times lower or 2
three times higher equivalent continuous
dose as compared with FHaber’s rule, this
could be reflected by taking those values
as the lower 5th and upper 95th percen-
tiles of the equivalent dose distribution for
constant exposure.

Note that in this step uncertainties are
are with respect to the same magnitude of the
same effect {endpoint). Uncertainties with
respect to possibly different effects due to
missing studies, even if they are at a similar
level of severity, are not addressed here. This

1248

additional uncertainty is best addressed after
completing steps 1-3, which are all related
to the specific effect under consideration,
For a discussion of some of these additional
uncercainties, see Supplemental Material,
“Cross-study/endpoint uncertainties.”

Step 3: Accounting for human inter-
individual variability in sensitivity. The aim
of this step is to take into account differ-
ences in sensitivity across individuals in the
population. For an exposure limit, for example,
the result would be the uncertainty distribu-
tion for the dose associated with a specified
endpoint and magnitude of effect {AMf*) for a
“sensitive” individual, defined in terms of 2
percentile or incidence in the population (/%).
To make these inferences, a population distri-
bution representing the variation in equipotent
doses among individisals needs to be specified.
Because there are usually Himited data as to the
magnitude of this variation, this uncertainty
nieeds to be taken into account as well.

Assuming a log-normal distribution for
human variability, with standard deviation
Gy on a log-scale, the relationship between
M*, the incidence of effects 1, 5, and human
dose HD is given by

L TTD)

Bliln HD —~In HDO5, 9o, 9]
where @ is the standard normal cumulative
distribution. A similar relationship can be
derived for any other assumed human vari-
abil ity distribution. For an exposure timit,
one selects a tar set incidence value 7,5 and
solves for dose . Given chat the median of
the distribution HD{(0.5, 4 was calculated
in step 2, chis can be calculated by multi-
plying the median by the ratio between the *
quantile of the variability diseribution and its
median, denoted the human variability factor
HVp- For alog-normal distribucion

H‘Viﬂ» = CXP{Z[* (7]1,7‘?? [1 0]

where 27 is the normal z-score corresponding
to a quantile 7, ;0. For instance, at 2 3%
incidence, zse, = ~1.64; at a 1% incidence,
&1op = —2.33. Combining Equations 2 and 10,
the resulting equatior is

HI{ ) =
AD e x DAF x YV l{AHU x OU).  [11]
For discussion of recent analyses of
human variability data, see IPCS (2014). For
instance, Hattis and colleagues (Hattis et al.
2002; Hattis and Lynch 2007) estimated
equipotent doses in a number of individuals,
and calculated the standard deviations Gy of
the log-transformed equipotent doses, repre-
senting the variability in sensitivity among
individuals. Then, they fitted a log-normal

discribution to these standard deviations

established for different chemicals {studies).

They separated the available data into toxico-

kinetic and toxicodynamic factors, and esti-

mated the uncertainty in the overall human
variability as a a combination of toxicokinetic
and tomwdynamlc variability. In chis way,

a default uncertainty distribution for inera-

species variation may be defined (JPCS 2014).
For some effects, we might suspect larger

differences in sensitivity than others, or it

might be known that the particu]ar rarget
subpopulation is highly sensitive for the agent
considered. Or, we might be more uncertzin
for some effects than for others, for instance,
for effects thar did not occur in the database
underlying the defaule distribution. In
such cases, one may decide to deviate from
the defaule diseribution in che appropriate
direction. If compound- and cndpom[
specific toxicokinetic or toxicodynamic data

are available, chese may be used to define a

case-specific human variability distribution,

with case- <pe£1ﬁ£ uncertainty about that
diseribution {see Supplemental Macerial,

“Chemical-specific/data-derived toxico-

kinetics or toxicodynamics”).

MC {Monte Caslo} calculation of HD,,/
Keeping variability and uncertainty distince
in the calculation of HDy/ requires a hier-
archical approach to implementadon. In

addition, because the individual distributions

cannot be combined in closed-form (particu-
larly incorporating uncertainty in the extent
of Emman varizbility), an M C simulation
approach Is necessary (see IPCS 2014, for an

“approximate probabilistic approach” that

can be implemented in a spreadsheet without

MC simulation). Specifically, ac each MC

iteration, all the steps addressing uncertainty

are done first, followed by the steps evaluating
variability:

* Evaluating uncertainty: Simultaneously
draw MC samplm [/ frum ADyp, DAF,
AHU, OU, and oy Obmmmg MO
samples from ADyp is not a standard
output from U.5. Environmental
Protection Agency (EPA) Benchmark
Dose Software (BMDS) (1.8, EPA
2014a), but can be generated with
PROAST using the bootstrap method
(RIVM 2012). Bayesian methods offer
another approach to generating suc h
samples, and sofrware .sucb as \X/mBL &
{(version 1.4.3; Lunn et al. 2000}, JAGS
{version 4.0.0; Plummer 2003), or Stan
{version 2.8.0; Stan Development Team
2015) can be used.

¢ Evaluating variability: Combine
(ADaej] x DAF[HARUL}] « OUL}Y)
to obtain one sample of the “median”
human dose HIX0.5,579[7]. Next, given
the target incidence 7% evaluate one
sample of the human variability factor
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HVR = explap )il Combining these
resules is one MC sample of the human
target dose associated with a particular
incia‘cnce 7 and magnitude of effect M
HDw A1 = HD(O5.,03 7] x HVLf].
¢ The result after many ‘;amplts is the
uncertainty distribution for HDy/
For the iustrative datasets discussed below,
this procedure was used with 107 MC samples
for uncertaingy (7} (for ADyp, 107 beotstrap
samples were resampled with replacement).
Datasets and computer code are available
in Supplemental Material, Table 51). An
example of this approach for an exposure limit
was provided by van der Voet and Slob (2007)
who used the term “JCED” (individual critical
effect dose) rather chan HD.

Calenlating population incidence for
stachastic quantal endpoints. In the determin-
istic mtaprctamon of guantal endpoints, the
caleulated incidence dire cctly represents the
expected incidence in the overall population.
However, in the stochastic interpretation,
the calculated incidence relates to a single
individoal's probabilicy M of experiencing
the quantal endpoines (such as a tumor).
For this reason, the HD/ for stochastic and
deterministic quantal endpoints cannot be
directly compared. To make such comparison
possible, for the stochastic interpretation,
the expected incidence in the overall popu-
lation needs to be calculated by integrating
all possible values of A (Slob ec al. 2014).
The calculation is simplified by the preceding
assumption that the Lmderiyiné continuous
dose—response relationships are “monotonic
and parallel on a log-dose scale across spccics
and across individuals within a species.
Specifically, let the animal dose-response
tunction be represented by

MAADY = FIAD, &), (12]

where M, is the magnitude of effect, AD is
the animal dose, and fis the dose—response
function with paramerters 8. Based on
“step 2,7 the median buman has the same
magnitude of response as the animal [i.e,
My = My, son] when the human dose
HD = AD x DAFI{AHU x OU). Rearranging
so that AD = HD x AHU x QU/DAF, the
dose-response function for the median
human will be

Mrrrs s00lHD) =
f(h’D w AFU « QU/DAF, 8), i13]
with the same model parameters 8. From
“step 3,” the equipotent dose across human
individuals is distributed log-normally with
log-transformed standard deviation oy
Therefore, the magnitude of effect for 2
particular percentile of the population with
z-score z, will be

Unified probabilistic dose~

My {HD) = flexplz x gl x HD =« AHU
x OUIDAF, 8). [14]

For a log-normally distribured population
of equipotent doses, z has a normal distribu-
tion. Therefore, the population arithmetic
mean of My will be equal to the expected
value of My, over a normally distributed 2
<M HDy> = | flexplz x 64
x HID < AHU x QU
+ DAF, 8) ¢lz) 4=, [15]
where ${z) is the standard normal
probability density.

In the case of a stochastic quantal
endpoint, My is the “individual probability
of effect,” which, averaged over the popula-
tion in Equation 15, would be, by definidon,
equal to the expected population incidence of
effect. Uncertainties in the quantities 8, DAF,

AHU, OU, and o would then need to be

propagated through the calculadon to derive

the uncertainey in chis population incidence.
MC caleulation of population incidence

for stochastic quantal endpoints. As with the
prototypical implementation of the unified
probabilistic framework described above,
implementing the calculation of population
incidence for a stochastic quantal endpeint
{Equation 1) requires an MC simulation. As
was the case for calculating HDy/, all the
steps addressing uncertainty are performed
first, followed by the steps evaluating vari-
ability. In particular, at each value of human
dose HD of interest:

® Evaiua[mg uncertainty: Simultaneously
draw MC samples [j] from 8, DAF, AHU
OU, and G Note that 8, which is gener-
ally multidimensional because most dose—
response functions have more than one
fitted parameter, has replaced the scalar
{one-dimensional) quantity 4D, from
above, Obtaining MC samples from 8 is
not a standard outpur from BMDS, but
can be generated With PROAST using
the boorm ap method. Bayesian merhoa
offer another approach to generating such
samples, and software such as WinBUGS,
JAGS, or Stan can be used.

» Evaluating variability: Generate a human
population by drawing NV samples z{£]
from a standard normal distribution, and
calculate the mean value over z of My

<1Lj}{(Z{D>>L1} S
E/{; _fol

b AH[/]J X OL;
BN,

where NV is larpe enough for convergence.

The result after many samples [/] is the
uncercainty distribution for <M{HD)>. For
a stochastic quantal endpoint, this equals
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response assessment

the expected populaden incidence of the

quantal effect. This procedure was used for

the stochastic quantal treatment of tumors
with 107 MC samples for uncerrainty {j) (for

8, 103 bootstrap samplca were resampled with

replacement) and 10¢ MC samples for vari-

abilicy (£). Datasets and computer code are
available in Supplemental Marerial, Table S1.

Hlustrative datasets analyzed. We used
two datasets contained as examples in the

PROAST software (RIVM 2012) to illus-

trate the appmach. BW changes in rats

and forestomach tumors in male mice. The
tumor dataset is analyzed muldple wa
deterministic quantal data, and as stochastic
quantal data, and with extra risk levels of

10% and 1%. As discussed above, the H/

outputs obtained for stochastic and deter-

ministic quantal endpoints cannot be directly
compared, so for the stochastic interpretation,
the expected tumor incidence in the overall
population was also calculated.

The uncertainty distributions for each step
are based on the following:

¢ The uncertainty in ADy» (BMD at
BMR = M is estimated via the bootstrap
method in PROAST. To address model
uncertainty, a standard set of models is
fitred, with the results of all models
having goodness-of-fit p-values > 0.05
combined with equal weight.

s The distributions for DAF and AHU
from Bokkers and Sleb (2007}, based
on historical data on interspecies BMD
ratios, are assumed:
= DAF = (BW 1o BW i~ @), with

¢ assumed to have a normal distribu-
tion with mean 0.7 and standard
deviation 0.024.

— AHU has 2 log-normal distribution with
a geornetric mean of 1 and a geometric
standard deviation of 2.0. Notably,
this distribution includes the current
U.S. EPA default animal-to-human
uncertainey factor {UF,) of 3 applied
after application of a deterministic DAF
within its 95% confidence interval (CI)
(U.5. EPA 1994, 201 1h).

The combined discribution for the animal-to-

human adjustment, when applied w rats or

mice, includes the commonly used animal-to-
human factor of 10 within its 95% CL

* OU is omitted from the analysis (the
critical study is assumed to be an adequate
chronic study).

¢ The distribution for Gy is based on a
reanalysis by IPCS (2014} of published
human toxicokinetic {37 dacasets)
and toxicodynamic (26 datasets) data
compiled by Hatds and Lynch (2007).
The result is a log-normal distribution for
G with a geometric mean of 0.746 and
a geometric standard deviation of 1.59.
The resulting distribution for the human
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'arhbiliw factor HV (Equatican 10},
when evaluated at an incidence * < < 5%,
includes the commonly used human
variability factor of 10 within its 95% CL

Results

For each example dataset, the results of
cach step in the probabilistic approach are
summarized in Table 4: 2§ BMD modeling
to estimate the animal dose—response rela-
tionship (Figure 4A and 5A), &) probabilistic
interspecies adjustments to estimate the equi-
potent doses in median humans (HDyy), and
¢) probabilistic estimates of human variability
to estimate the equipotent dose in sensitive
humans (HDy/) (Figures 4B and 5B-D).

Representative BMD modeling results
are shown in Figure 4A for the continuous
dataset (body weight changes) and Figure 34
for the quantal dataset (tumors). For the BW
changes, the exponential and Hill models
were fitted, both of which had goodness-of-fit
p-values > 0.05. For tumors, the multistage,
Weibull, log-logistic, log-probit, gamma, and
logistic models were fitted, of which only the
muldstage model failed to have a goodness-
of-fit p-value > 0.05. These da
clear dose responses, and the uncertainey
in the BMD is reladvely modest, with Cls
{ratio of 95th percentile to the 5¢h percenile)
ranging from 1.5~ to 4.4-fold.

With respect to HDy, the Cls are wider
due to the additional uncerrainty in the inter-
species adjustment {e.g., for example A in
Table 4, 5.5/0.53 = 10 vs. 11/5.6 = 2.0}, In
addition, the 95th percentile of the HD/ cis
lower than that of the BMD due to the allo-
metric sealing factor,

With respect to HD/, the Cls are
wider still, due to the additional uncer-
tainty in intraspecies variability, and span a
40- to 60-fold range. The 5th percentile of
the HD;s/ (Table 4, Figures 4B and 5B~}
might be used as the “probabiliscic RfD,”
interpreted as the lower (one-sided) 95%
confidence limit on the dose ar which an
incidence (J*) of 1% of the population experi-
ences effects greater than the chosen critical
effect sive M*. Note that the choice of percent

tasets show

Tabie 4. Summary of example probabilistic analyses.

confidence, critical effect size A%, and the
protection incidence 7 are informed by risk
managemeit considerations and may depend
on Y.'ht specific context for the expmuro hmlr
In the tumor example, a lower value for M
{(individual rumor risk} may be chosen by
risk managers, even though it relates to only
19 of the population. Usually, however, risk
managers may prefer o have an estimate of
the expected tumor incidence in the overall
population (described below).

Figures 4B and 3B-D show the 90% Cls
(i.e., 5th and 95th percentiles) for HDy  at
difference levels of incidence 7 as a funcrion
of exposure, for a specified value of A% Based
on these Cls, different options for protection
incidence (in combination with M might
be selected for deriving an exposure limir. The
advantage of the probabilistic framework is
iﬂmm tcd by its transparency in the output:

The magnitude of effect, the fraction of the
populacwn protected, and percent confidence
are all explicitly and quantitatively made
visible. Moreover, uncertainties related to very
small magnitudes of effect and/or very small
incidences in the population can be made
explicit and cransparent {(see Supplemental
Material, “Extrapolation to m'wnirudes
of effect below a crivical effect <1/c and

“Extrapolation to very low incidences”).

In the deterministic interpretation of
the observed tumor incidence (example B in
Table 4, Figure 5B}, the caleulated incidence
directly represents the expected incidence
in the overall population. However, in the
stochastic interpretation {examples C and D
in Table 4, Figure 5C,D), the calculated inci-
dence relates to a single individual’s tumor
probability A7* Thus, the exposure limit in
the deterministic case protects the relevant
fraction of the population (1 ~ /) against
cancer as such, whereas the exposure limics
in stochastic cases protect this fraction against
the specified extra risk of cancer. For this
reason, the outputs obtained from the derer-
ministic versus the stochastic interpretation of
tumor data cannot be direcdy compared.

As discussed in “Methods,” to compare
the results from both interpretations, the

expected tumor incidence in the overall popu-
fatrion needs to be calculated for the stochastic
interpretation by integrating all the incidences
I over all possible values of M. The results
of this analysis, including uncertainty, are
shown in Table 5 and Figure 6, where the
Cls on the population incidence of tumors
are compared berween the assumptions char
tumors are “stochastic quantal” versus “detes-
ministic quantal” effects. Resules from 2 eradi-
tional linear extrapolation approach are also
calcutated for comparison.

These results clearly show that the Cls for
each of the two probabilistic approaches are
wider than the difference between the Cls
{Figure 6, Table 5). Therefore, at least in this
eyampla the uncertainey in treating tumors
as a deterministic versus a stochastic endpoint
is not as great as the other uncertainties chac
have been characterized. Furcher, in this
example, the result from a traditional linear
extrapolation approach is not lower than the
lower {(one-sided) 95% confidence limit, so in
that sense it is not necessarily “conservative”
at the 959% level. The latter result was also
found in various example cases examined by

Slob et al. (2014).

Conclusions
Compared with previous probabilistic
appmfiches‘ to dese—response assessment
Baird et al. 1996; Evans et al. 2001; Gaylor
and Kodell 2000; Hartds et al. 2002; Slob and
Pieters 1998; Swartout et al. 1998), the frame-
work proposed here is the first to unify across
the various types of endpoints that may occur
in toxicological studies, such as condnuous
versus quantal endpeints, or cancer versus
non-cancer endpoints. It does so by treating
all endpoints as having a (direct or underlyiné)
continuous response (at the level of an indi-
vidual}. It chereby fulfills the NRC (2009)
suggestion to develop 2 unified approach o
dose-response assessment for all endpoints.
Fusthermore, as discussed in Supplemental
Material, the framework described here can
incorporate other advances in toxicology and
risk assessment, such as probabilistic exposure
assessment (sce Supplemental Material,

Example A B G ]

Datasat Body weight inrats?  Forestomach tumors in mice”  Forestomach tumers in mice?  Forestomach tumors in mice®
Type of endpoint Continueus i i StOLha\’[lL quantal Stochastic g guantal

M {effect metric) Pereent changs in body Incivid robability Individual probahility

¥ (eritical effect size)

Ay feritical ED (BMB) in chronic animal study]
HOyp (equipotent dose in madian human)

¥ {target incidence protected)

HDy# tequipotent dose in sensitive human}?

5%
58,11
{053, 5.5
1%
{0.031,1.4)

0.011, 0.47)

{exira risk) of tu

{axtra risk) of tumor

10% extra risk 1% exira risk

{1.7,3.7 {0.39, 1.72)

{0.076, 0.83; {0.621,0.38
1% %

{0.0044, 0.21) 3,0.679)

{0.001

The numbers in parentheses represent the 5th and 95th percentiles, respectively,

are rounded to two significant figures.

of the derived uncertainty distributions. All numbers representing dose are in mg/kg BW day. Velues

alYse controt BW of 0.496 kg for DAF. ®Use standard BW of 0.03 kg for DAF. “For the deterministic guantal treatment of tumors, BMD analysis uses EDgg. 9" Sensitive numan” is defined
by the target incidence, here 1%; an exposure fimit (“probabilistic Rf3"} can be based on the 5th percentile of the derived uncenainty distribution of HDy;" (bold), equivalentto a lower

{one-sided) 85% confidence limit.
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“Tntegrating with probabilistic exposure assess-
ment”), CSAFs or DDEFs (see Supplemental
Material, “Chemical-specific/data-derived
toxicokinetics or toxicodynamics”), and
adverse outcome pathways {see Supplemental
Material, “Extrapolation to downstream
healeh endpoints and adverse outcome
pathways” and Figure 81).

The main idea of the framework proposed
here is to quantify all relevant uncertainties
by distributions instead of using conservative
{single) values. However, for some uncertain-
ties, it is currently unclear how to quantify
them. Importandy, the uncertainty associ-
ated with the identification of the critical
studies and endpoints is difficult to quaniify,
and the usual {deterministic) approach of
focusing on rhc most sensitive studies and
endpoints is hard to avoid. Consequenty,
even if che probabilistic approach described
here is implemented, the result might be
more conservative than it appears. For
instance, if the particular species, strain, and
sex of animal were idiosyncratic (the effect
would not occur in humans) or particularly
sensitive compared with humans, che esti-
mated HD,/ would be biased downward.
Furthermaore, the most sensidive study from a
large collection of studies will likely be more
“conservative” than the most sensitive study
from a smaller number of studies. The current
approach remains unsatisfactory——be it in a
deterministic or in pmb&b]hmc assessmient,
In the shore-term, tbc uncertainties related
to the choice of the biological model might
be better characterized by carrying iomh
multiple spcucr/stiaum/sma and endpoints
to dose-response analysis {e.g.,
mended by NRC 2011), resulting in multiple
HDyf estimares thar reflece uncertainty in the
chosen biological model. Furthermore, the
emergence of studies using multistrain rodent
panels or genetically diverse population-
based rodent models (as opposed to single
homogeneous, inbred strains) might provide a
means to partially address these uncertainties
quantitatively (e.g., Chiu et al. 2014; Rusyn
etal. 2010).

In additien, even conditional on the
appropriate biological medel, a number of
implementation bhaﬂcnées remain. However,
although these issues have become more
apparent in developing the probabilistic
tframework, they are equally relevant for any
{deterministic) dose—respanse assessment
method, The most important conceptual issue
that has not yet been resolved is the question
of which guantal endpoints should be
treated as deterministic or stochastic quantal
cndpomts Although for histopathelegical
quantal data the dcccmumstu interpreta-
tion is obvious from first principles, it is not
directly clear whether cancer or malformation
quantal data should be treated as stochastic

A48 recoim-
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or as deterministic quantal data (Sleb et al.
2014). The problem is that it is not possible
to directly establish this distinction from inter-
pretation of single experiments, so additional
research is needed as to what medhods or
datasets can distinguish between these options,

As 2 practical matter, there may be a
tendency to treat more severe endpoints {such
as tumor incidence) as stochastic because, at

flistic d()Si—E----f’(—BSpOﬂSE assessment

first sight, they seem to lead to more conser-
vative results =altboufgh this may not always
be the case). If, however, an endpoinc is in
reality deterministic rather than stochastic,
then the outcome from the probabilistic
dose—response assessment would he based
on experimental error rather than biological
phenomena. We repeat that this problem
would not be specific for the probabilistic

ge (@

— Model fit
--- BMD, {5% BW change}

Incidence of » 5% BW chan

Wb

10 0 10 1
Bose [mg/lkg 4]

Dose [mg/{kg 4}

Figure 4. Results of analysis of example continuous dataset {rat body weight {BW} changas] as a function
of dose {milligrams per kilogram BW per day}. {4} Representative benchmark dose {(BMD} modeling results
using the Hill modal with #* = 5% change. {B} Median estimate and bth and 95th percentile estimatas for
the incidence {/} of effects of size » M* {i.e., 5% change in BW) as a function of population exposure [dose;
i.8, /yyp{Dosel]. For reference, alss shown are the probabilistic RfDs corresponding to a 1% incidence of
affects of size > M* at 35% {one-sided) confidence (black square}, the 90% {two-sided) € for the bench-
mark dose {vertical gray shaded area), and a deterministic RID equal to the BMDL?OO {vertical biue line}.
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Incidence of tumors
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Figure 5. Results of analysis of example quantal dataset {forestomach tumers in mice} as a function of
dose {milligrams per kilogram BW per day). {4} Representative benchmark dose (BMD) modeling results
using the Waibull modsl. Multiple BMD estimates are shown, with the EDg; corresponding to M* = tumor,
and the BMDyg and BMDy, corresponding to M* = 10% and 1% extra risk, respectively. {(B-0} Median
estimate and 5th and 95th percentile sstimates } for the incidence {(/} of effects of size > M* as a function
of population exposure [dose; Le, Lyp{Dosel]l In {8}, mouse forestomach tumors are treated as a
deterministic quantal endpoint, whereas in {£,D), tumors are treated as a stochastic quantal endpoint
{in (), M* = 10% extra risk; in (D}, M* = 1% extra risk}]. For reference, also shown in sach pansl are the

probabilistic BiDs corresponding to a 1% incidence of effects of size > M* at 35% {one-sided) confidence
{b]d{'k square) and the 90% [two-sided) confidence interval {CH} for the benchmark dose {vertical gray
shaded areal.
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framework, but it equally holds for traditional
deterministic dose~response assessments, such
as those that apply linear extrapolation.

Another conceptual issue related to
stochastic quantal endpoints concerns the
definition of a toxicologically equivalent
effect metric for individual probability of
effect (e.g., of malformarcions or cancer).
Specifically, it remains unclear bow individual
probability of effece observed in animals
can be made equivalent to individual prob-
ability of effect in humans in situations where
background risks differ greatly becween tese
animals and humans. Correction for back-
ground risk can be done in various ways, such
as additional, extra, or relative risk, but there
are no conclusive scientific argurnents to favor
one aver the other,

Although the framework discussed here
aims to estimate healech effects in the human
population in terms of both M and J, it is
often practical to choose a specific value of
M (or maybe several) to simplify the calcula-
tions, as well as the output. Therefore, the
choice of the critical effect size A {or BMR)
is often relevant. For continuous endpaints,
current conventions as to the critical effect
size M* arc based on a combination of
biological considerations and stadistical limi-
tations of typical dose-response data (e.g.,
EFSA 2009). For instance, it was argued by
the European Food Safety Authority (EFSA
2009) that the transition from NOAEL to
BMDL should not result in a systematic
change in derived exposure limits in the long
run, resulting in a recommended default
for continuous endpoints of BMR = 5%.
Of course, deviations in the w:fauh are
allowed if bicaiogic;ﬂiy subscantiated {e.g.,
BMR of = 20% for liver enzyme levels,
BMR of 10% for cholinesterase activity).
Furthermore, one is reminded thar the final
output from the dose-response assessment
includes the value of M, so that it remains
visible. Consequently, one might consider
requiring a lower value for 7 if the value of M
is suspected to be higher than desirable from
a public health perspective. For deterministic
quantal endpoints, the value of M* is implic-
itly defined by the dara (i.e., the associated
severity category}), although in some cases

more than one category may be reported {e.g.,
“mild,” “moderate,” “severe”). For stochastic
{quantal) endpoints, A* relates to the indi-
vidual prohability of effect (although in this
case, the overall population incidence can be
calculated as well, in which case A vanishes).
In addition, there is of course the issue
of choosing values (ie., uncertainty distribu-
tions) to he used as inputs in the probabilistic
dose—response assessment, Firse, it should be
noted that the uncertainty in the BMD is
quantified by the BMD CI. In the proba-
bilistic framework, this uncertainty directly
propagates through to the overall uncer-
tainty in the outcome of che dose-response
assessment. [n this way, it is directly visible
to what extent designing more quant!taﬂve]y
informative experiments would improve a
specific dose~response assessment, that
is, it might indicate thac further improve-
ment would substantially decrease the overall
uncereainty in the HDy/, or that the impact
would be minor. In rerms of the adjustments
from the POD, uncertainty distributions for
particular aspects have been suggested based
on meta-analyses of historical data (Baklwrs
and Slob 2005, 2007; Hattis et al, 2002;
Hattis and Lynch 2007}, and reviewed by
the IPCS (2014). Thus, in those cases where
no cass—spcciﬁc information for a given
aspect is avai lable, these distributions may
be applied as a preliminary “default” distri-
bution in probabilistic dose—response assess-
ments. The historical data underlying these
distributions were not generated for that
purpose, and it might bc argued that they
are not always perfectly representative or
highly informative. The fact chat the proba-
bilistic methodology exists makes it highly
valuable to gather and/or generate data that
may lead to better-supported uncertainty
distriburions. Therefore, further research
and exploration of historical data that may
inform the uncertainty distributions would
be highly useful. One of the greatest chal-
lenges is a better characterization of human
toxicodynamic variability, for which there
are much fewer data than for roxicokineric
variability, Emerging molecular-biology
and high-throughput syscems, such as use
of genetically diverse populations of human

Table 5. Human dose at various specified tumor incidences estimated by linear extrapolation and by
the probabilistic approach based on treating tumors as deterministic guantal versus stochastic guantal

effects for the example tumor datasst.

Human dose a

ming Human do g assu

Popu : deterministic quantal ef act

incidence {tumor [5th and 95th pe d 951k pare as)

dataset] {mo/kg/day)] frg/ko/day)
{0.029, 0.67 {0.020, 0.37)
{0.011,0.47) {0.6062, 0.17)
{0.0034, 0.33) {0.6012, 0.678)

{0.0013, 0.25) {0.00018, 0.040)

“Basad on U.S. EPA {2005} de
on the benchmark dose at a 10%
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approach, where the point of departure is the
% extra risk, scaled to @ human equivalent by multiplying 5y BW ima BWauman 2.

lower {ong-sided} 95% confidence limit

cells, offer some opportunities to address chis
data need in a more expedited fashion (Abdo
et al. 2015; Zeise et al. 2013},

Furthermore, we note that issues in
choosing input values hold equally for
nonprobabilistic dose-response assessments;
the main difference is that the latter methods
often use single default values, most of which
have been generally accepted by the risk assess-
ment community, largely by conventdion.
However, the current ngl default values
lead to point estimates with unknown levels
of confidence and unspecified levels of the
protection of the population. By contrast, the
probabilistic framework allows one to examine
qumrimrivelv the uncertainty, V')ri&biliry, and
magnitude of effect assoc 1a1F‘d with dose—
response assessments using such conventional
approaches. In the examples provided here
using the postuhtcd uncertainey distribu-
tions, the result of default approaches, such as
dividing an animal BMDL by 100 or lineardy
extrapolating from an ﬁli@mctr]mliy scaled
animal BMDL, were higher than the (one-
sided) 95% confidence limic of the probabi-
listic outpurs for the protection goals, in terms
of the magnitude of effect and population inci-
dences Hlustrated. A similar result was found in
case studies of carcinogens by Slob e al. (2014)
when comparing a probabilistic calculation
with linear extrapolation. Our results imply
that these eraditional deterministic approaches
are not necessarily conservative in the sense
that the derived “virtually safe” dose does not
always reach 95% confidence.

Incidence of tumors

10t e

194 10 10 Hos 1 1
Dose [mg/lkg )

Figure 6. Comparison of estimated human
population tumor incidences as a function of
axposure [dose {milligrams per kilogram BW per
day}] when treating tumors as a deterministic or
a stochastic endpoint. Shown are the 90% {two-
sided) Cls for human population tumor incidence
calculated from the probabilistic approach,
depending on whether tumors in the example
dataset are treated as deterministic or stochastic
guantal endpoints. For reference, also shown is
the population tumor incidence derived using the
default U.S. EPA method of linear extrapolation
from a point of departure squal fo the animal
BMDL,p allometrically scaled by multiplying by
{BW nima BWiymanl®2 {blue fine).
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Ultimately, as noted by the NRC (1994,
2009}, a probabilistic framework will provide
a substandally more complete quantitative
characterization of hazard. In particular,
in conjunction with exposure data, the
relative impact of different risk management
options—in terms of magnicude of effect,
incidence in the population, and degree of
confidence—will be much more explicit and
transparent. We envision that this will lead o
better-informed risk management decisions.
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